## SCIM7B36

## **Isolated Potentiometer Input Modules**

### Description

SCIM7B35 potentiometer input modules is a single channel resistance input which if filtered, isolated, amplified, and converted to standard-level voltage output. A five pole filter is provided with signal filtering, this SCIM7B36 modules interface to slide wires and potentiometer in both 2 or 3 wire configuration and incorporates.

In the 3-wire configuration lead resistance compensation is provided if the resistance of the "x" lead is closely equivalent to that of the "+" lead.Internal to the module measurement error due to lead resistance is canceled.

The input signal is chopped by a proprietary converter circuit after initial filter stage, isolation is provided by transformer coupling which eliminates common mode spikes and surges. The signal is then reconstructed and filtered for process control system output.

These modules accepts a wide 14 - 35VDC power supply range (+24VDC nominal). The mechanical (2.13''x1.705''x0.605'' max.) save space and are ideal for high channel density applications. They are designed for easy DIN Rail mounting using nay of the "DIN" backpanels.

## <u>Features</u>

• Industry's First 7B Potentiometer Input Module

•Interfaces  $100\Omega$  to  $10K\Omega$  Potentiometers

- •High Level voltage outputs
- 1.5KV Isolation
- •Accuracy +0.03% of span typical,+0.1% max
- ANSI/IEEE C37.90.1 Transient Protection
- •120V rms Continuous Protected on Input
- Easy DIN Rail Mounting
- •CSA, FM, CE and ATEX Compliant



## Analog Signal Conditioning & Isolation Products

# SCIM7B

### Specifications Typical at TA=+25°C and +5V Power supply

| Module                                                                                                                                                                                        | SCIM7B36                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Input<br>Signal Range<br>Protection<br>Continuous<br>Transient                                                                                                                                | See Ordering Imformation<br>120V rms max<br>ANSI/IEEE C37.90.1                                                                                                                                                                                                                                     |
| Sensor Excitation Current<br>Lead Resistance effect(3-Wire) <sup>1</sup>                                                                                                                      | 85mA(10KΩ)     to     260μA(100W)       -01 thru -04 $\pm 0.005 \Omega / \Omega$ -05 $\pm 0.02\Omega / \Omega$ -06 $\pm 0.04\Omega / \Omega$                                                                                                                                                       |
| Output<br>Signal Range <sup>(2)</sup><br>Effective available power <sup>(2)</sup><br>Resistance<br>Protection<br>Voltagr/Current Limit                                                        | See Ordering information $\begin{array}{c} 40 \mu \Omega \\ < 1 \Omega \\ \\ \text{Continuous short-to-ground} \\ \underline{\pm}12 \text{V}, \ \underline{\pm}14 \text{mA} \end{array}$                                                                                                           |
| CMV (Input to Output)<br>Continous<br>Transient<br>CMRR (50 or 60Hz)                                                                                                                          | 1500V rms<br>ANSI/IEEE C37.90.1<br>120dB                                                                                                                                                                                                                                                           |
| Accuracy <sup>(3)</sup><br>Nonlinearity <sup>(4)</sup><br>Stability (-40°C to +85°C)                                                                                                          | <u>+</u> 0.03% Span typical,<br><u>+</u> 0.1% Span max<br><u>+</u> 0.01% Span typical,<br><u>+</u> 0.02% Span max                                                                                                                                                                                  |
| Gain<br>Input Offset<br>Output Offset                                                                                                                                                         | ±60ππμ/ <sup>O</sup> C<br>±0.01Ω/ <sup>O</sup> C<br>±0.003% Span/ <sup>O</sup> C                                                                                                                                                                                                                   |
| Noise<br>Peak at 5MHz B/W<br>RMS at 10Hz to 100KHz B/W<br>Peak at 0.1Hz to 10Hz B/                                                                                                            | 1 mV<br>250 μV                                                                                                                                                                                                                                                                                     |
| Open Input Response<br>'+' Lead<br>'-' Lead<br>'x' Lead<br>Open Input Detection Time                                                                                                          | Upscale<br>Non-detreministic<br>Downscale<br><6s                                                                                                                                                                                                                                                   |
| Frequency and Time Response<br>Bandwidth, -3dB<br>NMR (-3dB @100Hz)<br>Step Response, 90% span                                                                                                | 100Hz<br>80/85dB<br>250ms                                                                                                                                                                                                                                                                          |
| Power supply voltage<br>Power supply Current <sup>(2)</sup><br>Power supply Sensitivity                                                                                                       | 14 to 35V DC<br>12mA<br>0.0001%/%V <sub>S</sub>                                                                                                                                                                                                                                                    |
| Mechanical Dimensions<br>(H) (W) (D)                                                                                                                                                          | 2.13"x1.705"x0.605"max<br>(54.1 x 43.3 x 15.4mm) max                                                                                                                                                                                                                                               |
| Environmental<br>Operating Temp.Range<br>Storage Temp. Range<br>Relative Humidity<br>Emissions EN61000-6-4<br>Radiated, Conducted<br>Immunity EN61000-6-2<br>RF<br>ESD,EFT,Surge,Voltage Dips | $\begin{array}{r} -40^{0}\text{C to } +85^{0}\text{C} \\ -40^{0}\text{C to } +85^{0}\text{C} \\ 0 \text{ to } 95\% \text{ Noncondensing} \\ \text{ISM, Group 1} \\ \text{Class A} \\ \text{ISM, Group 1} \\ \text{Performance A } \pm0.5\% \text{ Span Error} \\ \text{Performance B} \end{array}$ |

### **Ordering Information**

| Model                                                                                  | Input Range                                            | Output<br>Range                                                                                                                                                                     |
|----------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SCIM7B36-01<br>SCIM7B36-02<br>SCIM7B36-03<br>SCIM7B36-04<br>SCIM7B36-05<br>SCIM7B36-06 | 0-100Ω<br>0-200Ω<br>0-500Ω<br>0-1ΚΩ<br>0-5ΚΩ<br>0-10ΚΩ | $\begin{array}{c}1,\ 2,\ 3,\ 4,\ 5\\1,\ 2,\ 3,\ 4,\ 5\\1,\ 2,\ 3,\ 4,\ 5\\1,\ 2,\ 3,\ 4,\ 5\\1,\ 2,\ 3,\ 4,\ 5\\1,\ 2,\ 3,\ 4,\ 5\\1,\ 2,\ 3,\ 4,\ 5\\1,\ 2,\ 3,\ 4,\ 5\end{array}$ |

## **Output Ranges Available**

| Output Range | Part No. Suffix | Example      |
|--------------|-----------------|--------------|
| 1. 1 to +5V  | NONE            | SCIM7B36-01  |
| 2. 0 to +5V  | A               | SCIM7B36-01A |
| 3. 0 to +10V | D               | SCIM7B36-01D |
| 45V to +5V   | С               | SCIM7B36-01C |
| 510V to +10V | В               | SCIM7B36-01B |

#### Note:

(1). Lead resistance effect is given for the condition of not having NTC thermistor installed in the back panel.As a general rule as long as the load resistance of the (+) lead matches parallel combination of the thermistor and load resistance in the (x)lead ,the given specifications apply.

- (2). Output range and supply current specifications are based on minimum output load resistances. Minimum output load resistance is calculated by V<sub>out</sub> <sup>2</sup>/P<sub>E</sub> is the output effective available power that guarantees output range, accuracy, and linearity specifications.
  Accuracy includes the effects of repeatability, hysteresis, and linearity.
- (4). Non-linearity is calculated using the best-fit straight line method.

